Gnomes and Goblins preview

Well this was completely unexpected, and a very welcome surprise return for Jon Favreau and Jake Rowell’s Wevr title that seemed to have slipped into oblivion. I had played it again when I got my Valve Index last year but there had been no further updates or information since, like many early Vive demos that are still available but appear dormant in terms of development.

I always had fond memories of the Vive demo from 2016, but 4 years was a long time ago, especially in terms of VR software. So to find a “Venice” preview available at the festival was fantastic, and much more rewarding when I discovered in-headset that it wasn’t an updated Vive demo but something entirely new.

One problem I found with the original Vive demo was the requirement for a big room (to create a big play space) to get its roomscale VR to work properly. Without going into software and moving my playscape, an important trigger event could be just out of reach, often at home I’d find myself trying to flatten my Vive controller against the physical wall to try and reach something.

During the new Venice preview I used free locomotion, shook a fairy (don’t ask!), transferred through portals, paddled down a river on a raft, lowered myself on a rope platform down into a mine, explored a series of tunnels in an illuminating way, attended a meeting of many in a cave and finally released lanterns into the sky. Hundreds of NPC’s roamed about, some singing, many doing their own stuff, with gorgeous detail and animation. Overall an incredibly rich world, which felt like being inside a big budget Hollywood animation movie.

Performance took a hit, with strange microstutters in headset, despite my frame timing not averaging over 9ms/11.1ms (90hz) though the developer graph showed very thin yellow spikes in places. I tried adjusting super resolution without it resolving the issue. Textures seemed muddy and very “2016” in places, yet sharper in other places; close up interaction with NPC’s were richly detailed, longer distances were blurrier.

Something odd was going on, could be compatibility with the Index headset, though I suspect Viveport was not playing nicely with the new Windows update, or with SteamVR. Its not the first time I’ve had problems after installing Viveport, and was glad to uninstall it at the end of the festival.

I’ll need to play the Steam release at the end of this month to see if this problem reoccurs. The recommended specification demonstrates that this title will be perfect for the new wave of Nvidia RTX 3xxx graphics cards as its going to require some serious grunt to run well. For reference I’m using 8086K @ 5.2Ghz / RTX 2080Ti.

  • i7-9700K or equivalent
  • Memory: 32 GB RAM
  • Graphics: Nvidia Geforce GTX 2080 or equivalent

I’m not going to say any more as its better discovered first person in your headset. The full game releases on 23rd September 2020 and promises many hours of gameplay in its rich environment.

It’s not an exaggeration to say that Gnomes & Goblins is the biggest project Wevr has developed. Where the G&G Preview was a quick introduction to Buddy and his world, a bit like a tasting spoon of ice cream, this all-new, full-featured, multi-hour VR simulation game is like a full pint of your favorite flavor with new interactions and story moments to discover including new characters to meet, forest areas to explore, magical collectibles to discover and a range of open-world gameplay from climbing to paddle boarding to farming and brew-making.”Wevr

Thanks for reading! Rob Cole


Rembrandt Reality

Use your smartphone to travel to the year 1632 and step into Rembrandt’s painting ‘The Anatomy Lesson of Dr. Nicolaes Tulp’.

Place the gate and walk round in the Anatomical Theatre.

See through Rembrandt’s eyes how Doctor Tulp and his fellow doctors are examining the body of the criminal Aris Kindt. Discover all the stories behind the painting.

Developer description on Google play store

This amazing ARCore application for Android smartphones has been a pleasure of mine since discovering it over a year ago. It’s great to load it up every once in a while and enjoy the 6DoF environment in all its glory (it has a huge playspace).

Scanning the floor to create a ground plane

Best used outdoors in a quiet place, with good quality audio headphones. I use my Pixel 3aXL which has a good quality display, and sennheiser HD 461 headphones which provide some isolation from background noise. The application can be used with your phone display in portrait or landscape with auto rotation.

Placing the gate on the ground plane

The application boots up quickly and takes you through an introduction to the scenario and how to interact.

You then scan the floor to create a ground plane for the application to sit on, once ARCore has worked its magic a “gate” appears which can be placed precisely by tapping on your screen.

Initial appearance of the gate

Once the gate has been placed it materializes first as an archway with a stone finish, before opening the “gateway” into the Rembrandt environment.

An open invitation… what lies beyond?

You are then invited to walk through the gate, and this is where a genuine sense of physical space is generated from physically walking forward into a rich black backdrop, with the scene itself set further back from the entrance gate.

The anatomy lesson in progress

In front is the anatomy lesson of Dr. Tulp, and the surgeons keenly watching the dissection. I am able to walk forward another 5 metres before reaching the centre, the sense of scale is very impressive as it’s using 1:1 mapping.

With ARCore providing a solid geospatial anchor, I can freely walk around inside the environment, and get as close as I want with high quality assets showing rich detail in 6DoF.

The sense of presence is rewarding ‘despite’ this being presented on just a smartphone display rather than inside AR glasses.

During the experience, ‘hotspots’ can be clicked on which provide very useful insights into the original Rembrandt painting using images and audio description.

Up close and personal

Once you have selected the different hotspots you feel well informed, yet the real treat for me is always looking around the environment, with the ceiling a particular highlight – this is cleverly mentioned during one of the hotspot activated informationals.

Amazing ceiling with animated bird flying about

My other favourite element of this AR experience is exploring the boundaries of the environment and looking back through the entrance gate (to the “real world”) which causes a strong impression that you are inside the environment of the painting!

The participants appear to be taking note of the gate….

I haven’t calculated the available space inside the environment but it’s very large, I always finish by walking back through the gate.

The persistent nature of the application means that the gate straddling the boundary between the environment and real world can be carefully inspected, walked through, back through, the students and doctor remaining in place, a great example of a “Portal mechanic” in action.

Mind is blown by seeing the real world back through the gate! It’s fun to stand to one side and look around the thick edge of the gate out into the “real” street outside.

It’s always a pleasure to use Rembrandt Reality, the developers did a great job building this using ARCore. High quality experiences like Rembrandt Reality demonstrate the potential of augmented reality even on smartphones (I’d like AR glasses,but 2030?)

Rembrandt Reality is available as a free download on both the Google play store and Apple store (there is an ARkit build for Apple devices).

Thanks for reading! Rob Cole.


Valve ear speaker teardown

Ever wondered what was inside those neat off-ear speakers on the Valve Index?

“Balanced Mode Radiator” (BMR) ear speakers use custom drivers made by Tectonic for Valve. Valve list their audio solution as having these characteristics:-

Built-in: 37.5mm off-ear Balanced Mode Radiators (BMR), Frequency Response: 40Hz – 24KHz, Impedance: 6 Ohm, SPL: 98.96 dBSPL at 1cm.

In use onboard the Valve Index headset, the BMR ear speakers are unrivalled in terms of sound quality and sense of spatial soundstage for VR headsets, Emily Ridgway and her team at Valve certainly worked some magic here!

After experimenting with the BMR ear speakers and different audio headphones, I kept using the ear speakers as their excellent audio combined with quality of life (off-ear, on-board) was a great combination.

During the past year I did need to RMA a number of ear speakers, Steam support were very supportive and shipped them all as advanced replacement, and didn’t ask for the defective ones back. So I obtained some spares…

2 problem developed:-

1. Unwanted speaker movement. This seemed to worsen after lots of active gaming in Pistol Whip and Best Saber. Over time the ear speakers stopped holding the set position, drooping during a session or sudden movement. It appeared that the mechanism spring force degraded over time/use.

2. Vibrating. A slow developer but eventually the speaker pods started to vibrate at higher volumes or on bass hits. Not a malfunction of the driver but the physical connection between the speaker pod and speaker arm. This is felt as a looseness (slop) with light finger pressure, it’s easy to wobble the speakers pods.

Despite these problems I continued using the BMR ear speakers and gave Valve some feedback to help with further iterations.

How do they attach?

These attach to the Valve Index headset using a circular ‘pogo pin’ mounting system retained by a single torx T6 bolt through the headstrap.

Pogo pin mounting socket on Index headstrap

I decided to teardown one of my faulty BMR ear speakers to have a good look inside.

BMR Ear Speaker removed from Index, ‘Pogo Pin’ mounting system on the right
Carefully removed plastic cover (glued), I pushed it open using a flatblade screwdriver through the open slot for the height adjuster
Sliding height adjuster at minimum, power cable routing accommodates movement of height adjuster
Sliding height adjuster at maximum
Pogo pin mechanism taken apart showing pogo pin springs, bolts, sliding plate and circular pogo mounting

Looking closely at the “pogo pin” system, it’s cleverly designed using the springs to apply pressure to the pogo pins (to ensure contact with headstrap audio pads) and also allow vertical adjustment of the speaker with enough resistance to prevent unwanted movement.

Perhaps these springs are stretching over time/use, as springs do tend to stretch, to a reduced clamping force allowing the speaker pod to droop. It may be possible to tighten the small bolts to increase spring pressure, or pad the spring with steel washers to achieve the same.

The Circlip in the image above locks the speaker pod axle to the speaker arm.

This axle socket has gone sloppy (flogged out) on several of my ear speakers allowing the speaker pod to vibrate at higher volumes or during bass heavy audio. I’m unsure how this can be resolved without a different type of fitting, or perhaps a polymer bushing.

Circlip removed from axle
Speaker pod removed from arm, at this point I cut the power cables
Carefully working blade around speaker basket to break glue seal
Finally! Speaker assembly coming apart…
Wire basket removed, showing foam damper covering rear of driver unit
Wire basket removed from ear speaker pod
Thick foam damper from rear of ear speaker
Inside face of foam damper with moulding detail
BMR Ear Speaker pod stripped as far as possible, the plastic moulding was heavily glued to the front ring and resisted considerable force
Power wires to driver hanging inside speaker assembly
Detail showing driver and some type of baffling
Carefully cutting away the plastic moulding to access the driver
Driver core and baffling
Outside wire basket and diaphragm of driver
Cut apart driver showing magnet, copper coil, power leads
Close-up of coil

More information on the Valve Index audio is found in this blog article

Thanks for reading! Rob Cole.


Microsoft Hololens

I’ve been fortunate enough to have had several sessions with Microsoft’s Hololens AR standalone headset; it’s always been impressive to use despite the obvious limitations of current AR technology.

Talking of technology, Microsoft list the Hololens with these specifications:

Optics See-through holographic lenses (waveguides)

Holographic resolution 2 HD 16:9 light engines producing 2.3M total light points

Holographic density >2.5k radiants (light points per radian)

-Eye-based rendering

-Automatic pupillary distance calibration

In addition, the Hololens has a fully loaded sensor array:

    1 inertial measurement unit (IMU)
    4 environment understanding cameras
    1 depth camera
    1 2MP photo / HD video camera
    Mixed reality capture
    4 microphones
    1 ambient light sensor


  • Intel 32-bit architecture with TPM 2.0 support
  • Custom-built Microsoft Holographic Processing Unit (HPU 1.0)
  • 64 GB Flash
  • 2 GB RAM

Regarding pricing, I’d only heard of them being sold to enterprise and big business (i.e. Microsoft partners) but I once saw a Hololens for sale in computer exchange (CEX) for a cool £3,200.

From my somewhat limited understanding of augmented reality technology, there is a long roadmap of development still ahead.

VR is almost seen as a solved problem with further iterations only set to improve on what is already a very immersive experience in terms of ‘presence’ (feeling of being there). Wider field of view, varifocal, eyetracking, HDR, etc. These features will be introduced to consumer headsets as costs are reduced.

VR experiences are very effective even with current consumer level technologies.

But AR has a much harder set of technical challenges and problems to solve before we find ourselves wearing the “AR glasses” seen in a number of films and television shows over many years. 2 great examples of AR glasses and contact lenses in media are Hulu’s Mars mission television show “The First” (Sean Penn), and Clive Owen’s recent film “Anon”.

AR overlay in movie “Anon” with Clive Owen and Amenda Seyfried

Facebook Reality Labs, Apple and Microsoft are amongst those companies employing lots of very smart people to try and figure it out as the race to replace the smartphone with AR glasses is underway. Of course Microsoft had their kinect sensor technology from the gaming console business, which was further developed for Hololens.

Welcome to the future….

Microsoft’s Hololens AR standalone headset has available since October 2016 in the UK, with a new version shipping right now. Being a special order device aimed at enterprise customers, it’s been difficult to get any hands-on, until Microsoft did a launch party for their new London experience store.

And of course I went back several times in the following weeks to use it again, including a quiet morning where I had a full hour using the Hololens 😘

Interesting form factor and ergonomics:- rotate the headband, push it back, adjust the wheel on the rear of the headband.
Sensors galore and awesome looking waveguides

The device was reasonably light (reported at 579 grammes) and comfortable to wear with easy adjustment system using an rotating headband which is pushed back to fit, and then a simple adjustment wheel on the rear of the headband to change the circumference.

The holographic display was surprisingly impressive with the limited field of view not as severe as I had been led to believe. Yes it was limited especially compared to my VR headsets, but after all…it was using holograms 🤯

Holographic resolution and brightness were sufficient to create a convincing illusion, it was better than I had expected from reading many reviews prior to trying it myself.

I first did an experience focused on the current London location but with an AR overlay showing a historical scene with horse and carriages rolling past outside, which felt really magical.

Then I used several applications which were already onboard, with one showing how to use hand gestures; it was here the limitations of hand tracking were evident with it sometimes requiring several gestures actions to trigger. Despite that, it was great fun when it worked with the freedom of hands free computing.

However the lighting conditions were not optimum with lots of sunlight and people moving about,vso it would need testing in another location to determine the reliability of the gesture recognition.

Microsoft list the device capabilities as follows:-

Using the following to understand user actions:

    Gaze tracking
    Gesture input
    Voice support

Using the following to understand the environment:

    Spatial sound

Having an amazing time playing with Hololens

Overall I found Hololens to an impressive demonstration clearly signalling the huge potential for AR glasses.

Most importantly, it passed the “WOW!!” test, which is the potential of any HMD to make you pull the wow! face. This is clearly seen in the image below, wow!

Having now used Hololens several times, I’m really looking forward to trying it’s successor the Hololens 2.

I’m also very interested in following the development of augmented reality glasses as the successor to the smartphone. Google glass, Microsoft, Magic Leap, Apple, and many more to follow…

Making the transition to a “head up, hands free” computing platform has substantial benefits for skeletal posture, reduction of repetitive strain injuries, increased spatial and environmental awareness, and hand freedom to interact with the computing interface and the real world.

My experiences with the Hololens and Magic Leap has firmly convinced me of AR’s potential to change our world.

However, these 2 devices remind me of early VR headsets from the 1990’s, where potential was clear to see despite the technology being immature.

I don’t expect to see really competent AR glasses until the early 2030’s, but do look forward to trying further developments as AR technology continues to improve.

Big thanks to the people at Microsoft London for letting me use the Hololens. And thanks to you for reading! Rob Cole


Experiments with ette…

“ette is the first of its kind finger-tracking controller. Powered by TG0’s patented technology, etee allows user to control VR without gloves, camera, or other encumbering equipment. Etee is lightweight and intuitive to use. The controller has a battery life of 8 hours that enables the user hours of time to build, explore and immerse themselves into the world of VR”

Product Description, TG0

After reading Tony’s (a.k.a Skarredghost’s) recent review of the ette controllers I was intrigued and wanted to know more – especially in light of some ergonomic concerns he raised in his article:

This was a comment I posted on his blog post after reading the review:

“Hi Tony, Great review, very detailed. The ergonomics aspect is an interesting problem, due to wide variation in hand sizing. Typically we have 3 blunt measurements:

1. length: measured from tip of the longest finger to crease under the palm.
2. breadth: measured across widest area where fingers join the palm.
3. circumference: measured around the palm of the dominant hand below the knuckles excluding the thumb.

Creating a gripped or held object to cater for the wide variation is an interesting challenge.

This challenge effect many objects whether pistol grip on weapon, household item like cutlery or cooking tool, and of course VR controller; the Valve Index controllers (Knuckles) have the ability to use clip-on Palm boosters.

I’d be interested to try the TG0 Etee controller, without getting my hands into them it’s impossible to make any valid judgement; however some physical adjustment within their structure (a clip on spacer or sliding component with locking) may be beneficial to optimise the fitting for different hands.” 

Happy XR! Cheers. Rob Cole.

Tony introduced me to TG0 who are also based in London, UK. They quickly arranged a courier delivery and within a couple of days a small box containing an Etee dev kit had arrived; many thanks to TG0.

Packaging was neat and minimalist, although I must admit I damaged the cardboard box trying to remove the controllers as their handles were very firmly wedged into the foam. I resorted to pulling the entire foam slab upwards to release them from the box, which freed the controllers but also separated the adhesive tape holding the box together.

Physical examination

The etee controllers are wonderfully simple, yet very sophisticated in terms of material technology compared to the mechanical switches and sensors we commonly see in motion controllers.

TG0’s “secret sauce” is their patented material technology used to build the sensing strips, which I understand is already used in different commercial applications – this being their first foray into motion controllers for XR.

TG0 list these as the key features of their “Etee” motion controllers:-

-Multi function TG0 thumb-pad technology

-Wireless connection

-5 finger 100 level of sensing

-6hr continue using battery life

-Gesture sensing

-Magic Trackpad with swiping, scroll, rotation and pressure sensing

-Soft silicone shore A 60 touching surface

-Weight: 75g

-Size: L136 x W60 x H30 mm

Despite coming in a little heavier than advertised at 88g vs.75g, a single Etee controller is still considerably lighter than one of my Valve Index controllers which are 197g each.

I’m also using 3D printed Valve Index ‘Palm Booster’ clip-ons, which I have to use to put controls at correct “reach” and to increase controller body “volume” to suit my medium sized hand fit, but this takes a single Index controller up to a weighty 224g.

Releasing the Palm Booster was a smart move by Valve’s designers to widen the range of hand fits possible on a single device, and many Index owners placed orders with 3D printing shops soon after Valve released all the Index mod files for free under the Creative Commons License.

From nearly a year’s experience of using “naked” Index controllers and “Palm Booster” Index controllers, the clip-on added an important tactile enhancement as the additive printing process creates a warmer, more textured surface.

This helped balance the “material mismatch” I’d experienced as a proprioceptive challenge between the soft, warm fabric strap and cold, hard plastic controller body in the weeks following the Index launch.

As well as the weight difference between the Etee and Index controllers, there is a big difference in physical size as can be seen in the side by side image below:

The Valve Index is used for comparison here as its the most advanced VR motion controller currently available to the consumer, whilst Etee offers a new approach to hand input championing a revolutionary material technology and different way of thinking.

Unlike many controllers past and present, Etee lacks physical buttons or triggers, instead providing full finger tracking across a rubberised controller body – an oval shape 26mm deep facing the palm (palmer side) and 32mm wide across the hand, combined with a large tracked thumb pad up top.

The low durometer (60a shore) controller skin has moulded vertical ribs which curve around a glowing status window, giving a soft, tactile feel with a small moulded ridge to separate the index and ring finger.

This moulded ridge protrudes 6mm from the surface, what I took to calling the “index” ridge (not to be confused with Valve Index!) to assist in locating and separating the index and ring fingers.

Controllers are marked “L” (left) and “R” (right) at the top of each handle as they are orientated specifically for each hand.

Perhaps the standout piece of the controllers is a rose gold coloured “finger bar” which provides a stiff brace for a sculpted foam cushion which is glued with adhesive tape to a channel along the inside face of the bar.

This foam bar “sandwiches” the finger against the rubber controller body, effectively capturing Etee to the hands without requiring any adjustable straps or safety lanyards which is a good “quality of life” improvement if regularly putting on and taking off.

This foam cushion is punched through with 8 triangular holes which increases its flexibility, perhaps helping to accommodate larger fingers. The foam is a relatively high density, possibly a requirement to maintain structural integrity as its only 12mm wide and 10mm deep at maximum.

The foam also has a forward extension protruding 9mm at the same vertical height as the “index” ridge on the controller skin, although rotated approximately 30 degrees around a vertical axis to the side of each ridge.

This locates the index finger of each hand and secures firmly in place by encircling that finger, whilst the remaining fingers are left “open” especially the little finger (pinky) which floats about unencumbered.


My first quick setup attempt at fitting Etee was strange, being in a rush I pushed them on horizontally through the finger bar foam, finding a comfortable position across my “middle phalanxes”. I had tried pushing the controllers further up my fingers but found the opening between the body and foam a bit too small, I was concerned to snap or bend the finger bar if I forced them.

They felt odd but seemed to fit in some way, until both Tony and TG0 pointed out from a photo I’d emailed them, that I had them incorrectly fitted! So much for reading the instructions….

The hand anatomy image below shows the names of the 27 different bones that make up each human hand. From this image we can see the Middle Phalanx where I’d incorrectly first fitted them, and the Proximal Phalanx which was the correct location.

Image: Paul Jarrett, Murdoch Orthopaedic Clinic

TG0 advised me to fit by “sliding” the controllers vertically down over stretched hands, aiming for the foam to make contact with the proximal phalanxes of the index, middle and ring fingers. I watched the videos on their website again and it started to make more sense.

I tried fitting them again, and despite being a tight squeeze that felt sure to rip the foam off the finger bar, I finally got them on and gave my fingers a quick outstretched wiggle which felt very liberating as I now had “hands free” controllers firmly clamped in place.

I also found it a lot more comfortable to remove my wedding ring as this was being uncomfortably squashed into my ring finger during the fitting attempts.


Setup was very easy with a USB dongle, an email I had earlier received from Tg0 contained a download link for their software.

These dev kit controllers have 3 degrees of freedom (3DoF) tracking like the older Samsung GearVR and Google Daydream headsets and remote controllers.

This means only rotational motion is tracked around a fixed location:- pitch, yaw, and roll, but not able to move forwards, backwards, side to side or up and down.

All contemporary PCVR systems and the Oculus Quest stand-alone use 6 DoF tracking for headsets and controllers; 6DoF allows movement forwards and backwards, up and down, left and right (translation in three perpendicular axes) combined with the rotation (pitch, yaw, and roll) of 3DoF systems.

I was interested to see how 3 DoF motion controllers would mesh with a 6DoF headset, in my case the Valve Index. My previous experience of using two different tracking systems together was limited to brief sessions with Lenovo’s Mirage Solo and HTC’s Vive Focus.

Both of those devices 6DoF headsets felt comfortable and immersive but compromised by a “fixed point” 3DoF controller which acted like a strange laser pointer fixed to my hip.

Is 6DoF possible?

It is possible to attach an HTC Vive Steam VR tracking puck to a special bracket, but after speaking to TG0 they advised me to wait for the new 6DoF SteamVR version of ette which is due later this year.

For the purposes of these experiments I limited myself to using the Etee visualiser whilst viewing the desktop through my Index headset, as I was more interested in the direct “hand feel” of using the controllers rather than interacting with virtual worlds.

After charging the controllers using 2 USB leads provided with the dev kit, I installed the software and took them for a test drive after starting steamVR alongside the Etee visualiser.

Calibration and rotation are easily handled through the Etee application, with a simple keyboard input starting each process, and on-screen instructions which indicate the position the controllers should be orientated against.

After getting them calibrated and setting rotation, I started my journey…


They feel surprisingly light in the hands, though unstable as they roll inwards towards the palm as the fingers are closed.

For quick comparison I looked at what happened when squeezing an Index controller and what happened when squeezing an Etee controller

Because Etee is clamped to the upper bones (proximal phalanxes) of the fingers rather than across the palm like index, closing my hands causes the controller to rotate as my phalanxes change angle, a large gap of 30mm before making contact with my palm.

This also causes the thumb to pivot backwards, if using the thumbpad whilst trying to close your hand! The image below shows the immediate difference in how the Etee and Index controllers are clamped to the hands.

Moving my fingers produced an immediate response in the Visualiser application and I started noticed haptic feedback loudly buzzing inside the controllers as “gestures” were made using combinations of fingers.

The most impressive aspect was their finger tracking, which I found to be very reliable once the controllers were fitted correctly and calibrated.

Individual finger tracking was almost flawless, even when lifting fingers off the body surface and placing back down in a slightly different pose; unlike my Valve Index controllers which sometimes struggle to maintain accurate per-finger tracking despite the “drum roll” recalibration and hardware reset tricks.

Etee’s pinky (little finger) tracking was especially reliable, and allowed me to finally include my little finger as a reliable participant in my experiments

Another impressive feat was their sensitivity to finger pressure, as mentioned in their literature “100 levels” per finger and its easy to understand this is no idle boast but a reflection of the precision of their material sensing technology.

This sensitivity allows controlled ramping up of pressure, and it was great fun “driving” my fingers and watching the finger levels rising from green to orange on the Visualiser.

I found the calibration process which uses outstretched hands created a strange finger input pressure if I tried to relax my hand into a neutral pose; try relaxing your arm and hand, and watch your fingers curl inwards as if holding a drink.

I tried to recalibrate from this neutral position but it caused the calibration to go a little wonky so I reset it to the outstretched fingers position again. This meant unless I kept my fingers outstretched (an unnatural pose) the input pressure rose typically on the pinky and ring fingers.

In terms of hand fit, I immediately found the foam finger bar too close to the controller body, causing my fingers to feel compressed to the point of discomfort, limiting my session time.

This sensation felt much more pronounced as Etee are securing the controller to the hand by clamping a foam block across the dorsal side (backside) of the Proximal Phalanxes.

The dorsal side of the hand is unused to pressure as its pretty much unused in everyday life, unlike the palmer side which is familiar with contact as we hold objects by using fingers to pull objects against our palms (try picking up your smartphone).

I refer back to my ergonomics article on the Valve Index controllers:-

The skin of the palmer side including the fingers is tough, thick and hairless with your fingerprints (double rows of papillae) help you grip objects as well as protect the skin from ripping.

Straight away with the Index controller I have the odd sensation of having something clamped across the back of my hand, it’s unusual as it goes against a lifetime of not having anything clamped across the back of my hand!”

The Etee controllers go one further than the Index controllers in clamping to a more sensitive part of the hand with thinner skin, and clamping using a high density foam of narrow width which is readily felt as it localises clamping pressure causing a proprioceptive challenge like Index.

Where Etee is less problematic is that the hand has soft rubber on side and foam on the other with Index having fabric on one side and hard plastic on the other which causes a material mismatch.

There wasn’t any way to adjust the position of the foam, as the bar was a fixed length to the controller body, so I turned my attention to the foam itself; thankfully this was only secured with adhesive tape so it quickly came loose.

Now with a blank finger bar, I searched through my fitting toolbox and found a number of different pads from bicycle helmets as well as foam pipe lagging of different thickness. Getting to work I trimmed different pads and stuck them in place, quickly realising the difference between ‘just too tight’ and ‘just too loose’ was critical to hold the controllers firmly in place without discomfort.

The alternative cushioning was interesting to try out, but made the controllers less stable as the material was a little too soft allowing free movement of the fingers, it needed to be a higher density like the original Etee foam cushion.

Moving further I removed the finger bars completely and tried using the controllers “naked” which was interesting, though a bit frustrating as without clamped fingers the sensitivity was all over the place making reliable inputs less frequent.

After spending a while trying the Etee controllers without their finger bars I decided to strip them down further and had a good look inside after peeling off the rubber controller body. The sensor strips were clearly visible, and some internal hardware.

Before putting the Etee controllers back together, I wanted to examine how changing the shape of the controller body would alter the hand fit so cut and taped together a larger diameter foam shape with a forward offset to create a relaxed hand pose.

Without the finger bar the controller felt like an oversized GearVR or Daydream remote and surprisingly comfortable to hold though the sensors did not register buried far underneath the foam. The big difference was that the controller did not “roll” in the palm when pulling the fingers as there was no gap with my hand “filled” by the new shape, creating a more stable grip pose.

Looking at other grips used for different sports equipment, handlebar grips on bicycles were an immediate comparison.

Round, constant diameter rubber grips are used on flat-bar sports and mountain bikes to allow the hand to move dynamically as the rider moves their body about on the bicycle, especially when standing up or sitting down. This instability of grip in the hand is what helps give a sports bicycle their agility, but at expense of stability and comfort.

In contrast, shaped ergonomic grips are commonly used for leisure bikes which are typically ridden in a seated position; another use for ergonomic grips is for riders with ulnar nerve damage whom benefit from a reduction in pressure on the wrists by having the palm fully supported.

After my quick test with the foam the solution to adjust the shape of the controller body and rubber skin would be the decision of TG0 as it would require a new design of controller (though using the same technology). Satisfied that adjusting the body shape could prove very beneficial. I refitted the rubber skins and thought more about the finger bar.

Adjustment time

I needed to create an adjustable distance finger bar; using the original high density foam piece and accommodating for different hands by moving the finger bar in or out, rather than trying to adjust a fixed distance using different thickness foam pieces…which hadn’t proven successful so far.

After sketching out the existing design and looking at the measurement I realised that creating a method of adjustment was going to be tricky due to the lack of physical space around the finger bar and body junction.

Following a number of iterations in my workshop using different cog parts (commercial off the shelf goods) like metal brackets from bicycle mudguards, plastic light fixings and different sized metric fitting bolts I finally managed to create a working prototype which actually surpassed my expectations in terms of its adjustment range.

By removing the finger bar’s attachment block (which has 2 angled keys that lock into slots on the body) I created an empty volume of space in which to fit an adjustment mechanism; 2 steel plates with oval slots to allow “infinite” sliding adjustment within its range.

A fixing bolt was captured with a knurled plastic knob with its own internal screw thread, and various bolts, nuts, grub screw used to attach the controller body to one of the steel plates, and to attach the finger bar to the other steel plate.

Finally I cleaned up the finger bar with isopropyl alcohol and firmly stuck some male velcro in place, and female velcro on the rear of the original finger bar foam so that the foam cushion could be adjusted from left to ride along the chanel of the bar – this would allow fine tuning of the foam ridge relative to the index finger on each hand.

After assembling my prototype I sent an email to TG0:

Previously I found the controller squashed my fingers which was quite uncomfortable and limited my time using them, unfortunately no way to adjust the clamping force though I tried a number of different cushions inside the finger bar (always slightly too loose or too tight). 

I quickly realised a method of adjustment was required. 

I went through many iterations to try and get this right as space was very limited whilst it needed to be easy to adjust whilst wearing, and offer “infinite” adjustment within the range of movement (clicks/notches are often just too tight or too loose).

This modification allows 3 adjustments to accommodate a wider range of hands/fingers. 

1. Distance (depth) from controller body to finger bar 

2. Angle of finger bar relative to controller

3. Lateral position of foam relative to index finger

Adjustments 1 and 2 are made using the black knurled knob which loosens and tightens a bolt, easy to do whilst wearing. 

Loosening the knob allows forward and backwards sliding movement to set the distance and adjust angle if required; tightening the knob locks the position. 

Adjustment 3 is made by repositioning the foam on the finger bar, because the foam is now velcro backed it’s easy to adjust left to right(can also swap to different shapes or materials)”.

The proof is always in using something practically, so I slipped both controllers on and started the Visualiser. For the purpose of this experiment I had modified only the left controller, as I didn’t want to risk damaging both if it didn’t work properly.

Thankfully, this was not the case, with the new adjustable left controller allowing me to find the ideal depth and best angle for the finger bar foam to maximise comfort whilst maintaining enough clamping pressure to retain the controllers in place.

This adjustment was easily done whilst wearing both controllers, with the knurled knob very easy to turn due to its vertical orientation.

The adjustment angle of the finger bar foam was limited by its square cross section, perhaps cutting a slight chamfer on each outside edge would soften its presence and allow more angle adjustment whilst providing enough flat contact against the load bearing bone to stabilise the controller.

Having the adjustable left controller and fixed right controller to compare against each other allowed easy assessment of the differences in comfort; the adjustable controller now accomodating my hand fit without squashing my fingers.

In terms of function, still very similar with the controller body rotating towards my palm every time I closed my hand.

Clamping the controllers to the proximal phalanxes will always cause this rotation but without a 6DoF version to assess using steamVR applications, I was unable to properly assess the etee controllers as virtual reality input devices.

The question of whether the mechanical switches, for example the trigger common to existing motion controllers, can be replaced by TG0 sensing technology; wasn’t something I managed to properly assess during my experiment.

The day following the completion of the adjustable left controller, the rigid plastic finger bar of the right controller snapped across its middle whilst I was removing the controller, putting an end to my experiments with Etee.

I suspect it fractured from being overloaded by my fingers being too large to accommodate, stressing the plastic over time and failing at the weakest part of the finger bar.

After speaking to TG0 they advised me the plastic was not production strength but a weaker 3D printed piece; this failure should not occur on production controllers and so my failure with the Dev kit should not be considered representative.

Immediate improvements to my adjustable concept would be a more rigid adjustment structure as the steel plates were rigid enough for my testing purposes but would benefit from being stiffer for day to day use especially for larger hand users with more strength and finger leverage.

Additionally, a “captive” bolt for the sliding adjuster plate to make it even more responsive to adjustment (the existing bolt can start turning if the knurled knob is unscrewed too far).

Finishing my time with the Etee controllers, I thought about the improvements that could be made to their ergonomic shape, and adjustment to suit a wider percentile of users.

The sensing technology itself was very impressive, and with a successful Kickstarter now backed and a SteamVR version due towards the end of the year there is a lot of potential waiting to be unlocked from this interesting product.

Thanks to TG0 for supplying this sample, I wish them luck in their developments. And thanks to you for reading! Rob Cole,



Originally published by SkarredGhost. Edited to remove my original spelling mistakes and some images updated. All images by Immersive Computing unless otherwise stated.

Introduction by Tony at Skarredghost:

June, 28th, one year ago, Valve launched the Valve Index, one of the best virtual reality headsets on the market. To celebrate its first birthday, my friend and renewed XR ergonomics expert Rob Cole of Immersive Computing has decided to write another one of his very interesting guest posts about his experiments with this device, that you can read here below. The post is long and detailed, and will teach you all the modifications that you can apply to improve your experience with the Valve Index.

Happy birthday, Valve Index!


It’s hard to believe it’s already been a year since I received my Valve Index PCVR kit on launch day, June 28th 2019. I wish the Valve Index a very happy 1st birthday, with reports of new Indices being shipped to customers as fast as they can make them!

This article looks at some of the different modifications I’ve experimented with during the past year to improve the fit of my Index headset, Index controllers and Index ear speakers, as part of what I like to call my Re-Index project. 

I’m not going to get bogged down by talking about RMA claim as it’s not the focus of this article. But yes, there have been many problems since launch including replacement of the headset, tether, controllers, and ear speakers. I lost about 1/3rd of the past year waiting on replacement parts.

I’m currently on my 7th left Index controller and 6th right Index controller which informs me that controller issues have not yet been resolved. But I’ve been impressed by Valve’s active warranty support with a number of my RMA claims resolved as “advanced replacements” where the new product was shipped before the faulty product was returned.

Despite the loss of VR time and frustration over sometimes the long delay in receiving new parts, overall the sheer sense of presence and immersion provided by Index is unlike anything else currently available on the consumer market, and for that reason alone I have stuck with my Index.

Wide Face Gasket Base

For some unknown reason Valve released the Index headset in June 2019 with only a single, relatively narrow facial gasket, which immediately became a problem for my medium-sized head (59cm) as the Index simply did not fit onto my face.

I was puzzled by this omission, as their previous collaboration with HTC saw the Vive released in 2016 with both narrow and wide facial gaskets to offer 2 fitting options out of the box. 

Later I learned that Index development kits were originally supplied with narrow and wide facial interfaces, as listed by the Valve Index webpage from early April 2019 which clearly listed:

2 Face Gaskets (narrow and wide)

But by the end of April this was changed to just:

Face Gasket

Much later (early 2020) physical evidence of the “L” development face gasket emerged after Steam Support mistakenly sent one to a Redditor, who then posted a picture on Reddit asking how to attach the gasket, as it did not have magnets (production gasket) but clip-in tabs (pre-production).

This has led me to consider why the wide facial gasket was officially dropped, and despite asking Steam Support on three different occasions over the past year, I always get the same reply:

Unfortunately we do not have any information on potential future products. For information on current sales and promotions please refer to the Steam Storefront, the Steam News section, or on the Valve Index store page.

For reasons unknown it seems there is no interest in a wide face gasket within Valve, which seems bizarre as it cannot be true that all of Valve’s staff and 3rd party developers happened to have narrow faces.

One theory is that the Index is display-limited, and the wider face gaskets simply showed an unflattering view with black borders. This idea is supported by an IPD upper limit for Index of only 70mm, compared to the Vive Pro at 74mm. From Steam user “Edhem”:

My IPD is 74mm, and as soon as I tried the Valve Index, I started getting a headache. I currently have the HTC Vive and I have tried the Vive Pro, both with 75mm IPD vs the Index’ 70mm, and neither of the HTC headsets gave me any issues. I am sad that I will never be able to buy the Index as it appears to be a great device, but only made for smaller people.

Either way, there was no wide face gasket product offered by Valve, although Valve did the modding community a big solid by releasing the Index modding CAD files which included the plastic base model for the face gasket.

Modder “Anonymous Hermit” quickly stretched out the Valve base design to create a wider base, and released it on Thingiverse under the Creative Commons Licensing scheme. You can find it at this link:

After getting quotes around £200 from several UK 3D print shops, I managed to get a much more reasonable price from Ninja Prototype who offered to print my base in their Chinese print shop and ship direct to the UK.

This was the first time I had used a 3D printing service and I was really impressed by their smartphone application which made the entire process incredibly easy.  About 2 weeks later, my wide base arrived and I got to work building a wide face gasket for my Index.

Wide face gasket build

Top: Valve Index face gasket; Bottom: Wide face gasket build

With Anonymous Hermit’s wide base design now printed, I set about building my own wide face gasket. The dramatic difference in the width and radius between the Valve face gasket and my wide face gasket can be clearly seen in the image above and demonstrates how crucial the wide gasket actually is for fitting wider faced Index owners.

I purchased a pack of 1 x 5mm Neodymium magnets, industrial-grade self-adhesive Velcro, and aftermarket Vive face cushions, and carefully bonded the magnets and Velcro to the 3D printed base after degreasing with Isopropyl Alcohol to remove any skin oils or other contaminants.

The Vive cushions were then cut to fit the larger Index eye box and positioned to give the most comfortable position whilst presenting the optics in a neutral position.

After letting the adhesive cure overnight I started testing my wide face gasket which immediately solved the “narrow fitting” issue and proved that a wide face gasket could work for Index.

Other “comfort” issues would arise in the longer term from the use of PU face cushions, but at least for now I could finally wear my Index without having my face squashed and my eyes in the wrong position.

Magnet Stacking

After building my wide face gasket, I discovered it was possible to make fine additional adjustments to the face gasket fitting by “stacking magnets”, as seen in the image above.

To get a 3D printed facial gasket to attach to the Index headset, 4 magnets are bonded onto the plastic base, 1 in each corner; I used readily available 2-pack epoxy adhesive and left to cure overnight. 

These tiny magnets (5mm dia x 1mm thick N42 F351-50) are very strong (0.3kg pull), and quite capable of supporting several stacked magnets without the stack becoming unstable (which could cause the face gasket to shift around).  

This led to a realisation that some asymmetry could be partially accommodated beyond the standard adjustments offered by the Index headset, using different arrangements and numbers of the magnets on each of the 4 mounting posts of the face gasket.  

One noticeable difference for me was placing stacked magnets on the 2 top mounting posts which seemed to sharpen the picture quality as well as creating eyebrow clearance, I also experimented with different left/right bias which made further subtle changes. 

I wrote an article about building my wide face gasket for this blog and you can find it here.

VR Cover Valve Index face gasket

After months of using cut-up Vive face cushions in my 3D printed wide facial gasket base, I was pleased to learn that VR Cover were bringing their own facial gasket to market – the first after market facial gasket replacement for the Index to hit the market.

Tony at SkarredGhost was kind enough to put me in touch with VR Cover who quickly sent me some production samples to test. 

Their well finished plastic base was the same width and radius as the Index original, with thick and thin PU face cushions offering 2 different fits on the 1 base.

VR Cover’s thick cushion gave the same narrow fit as the Index original so was unusable for me, whilst their thin cushion was a closer match to my facial width, but at the expense of headset comfort. Index is a relatively heavy headset with a long tether requiring clamping force from its head strap to keep the headset in position on the face especially during active gaming. 

I quickly found the thin cushion was unable to isolate my face from the weight and clamping force of the Index headset, whilst the PU material got hot and sweaty very quickly allowing moisture to build up inside the headset, making longer sessions uncomfortable with red marks left on my forehead, sweaty skin and sometimes a mild headache.

My recommendation to VR Cover was to produce the plastic base in 2 widths (original and wide), offer a pre-curved (no ripples) face cushion for each width of base, but using a medium thickness breathable foam and skin-compatible surface layer to provide better comfort for longer sessions, kinda like what Valve did with the original Index facial interface.

Another concern was the lack of absorbency to protect the headset from sweat corrosion damage: as seen in the image above the PU cannot absorb moisture causing the lenses and inside of the headset to quickly become wet. This is not ideal in the long term as it may cause similar damage to that seen on the HTC Vive when used with PU cushions.

Unfortunately the Coronavirus pandemic soon followed, and production facilities around the World shut down which saw stock shortages of all VR products including headsets, controllers and after market accessories.

Hopefully VR Cover and many other VR companies with their manufacturing partners can all get back to prototyping, building and distributing their products very soon as many VR enthusiasts especially Index owners await further improvements!

You can find my full review of the VR Cover cover for Valve Index in this blog as well.

“Pogo biscuit” working prototype

After getting a workable face gasket installed in my Index headset, I turned my attention to my ears which were unhappy with higher sound pressure blasting my left ear.

After looking at every audio related software solution, including reducing left volume which seemed to just let in more background noise rather than resolve the imbalance, I realized it was a physical imbalance caused by my perfectly normal, human asymmetry. It’s common to have asymmetrical ears, faces, hands, feet, etc.

With a normal pair of audio headphones, most people can get a good fit with the adjustments available on the sprung headband, and unless an outlier in terms of fitting, will find the experience comfortable.

However, with the off-ear “Ear Speaker” design on the Index, there was no depth adjustment to accommodate different size and shape ears, and wonky heads! This meant that the left and right speakers might be a different distance between the left and right ears due to variations in head and ear shape.  

A physical adjustment was required, and I measured my gap difference at about 10mm on the left, which was a good starting point. Quickly going through ideas for redesigning the arm mounting mechanism, before settling on a simple physical spacer with matching “pogo-pin” pass-through electrical connections for the headset and ear speakers.

Soon, a collaboration on Reddit with Anonymous Hermit produced the Thingiverse model they published; using an East London 3D print shop I had a dozen biscuits printed and built some working prototypes after using cut down bicycle spokes to create electrical pass-through pins. I took the best-finished prototype, installed it into my head strap with a longer M2 screw; it worked well and proved the concept was firm.

However, it was tricky to build at scale as the 3D printed solution wasn’t ideal in terms of small detail strength, requiring an injection mould tool and pogo pin fittings would need to be custom made with large minimum orders.  

Whilst I was figuring this all out, the Hermit launched a much smarter and simpler solution…

5.4 degree ear speaker spacer

Anonymous Hermit had figured out with some maths that a simple shim could be added to the existing BMR ear speaker setup whilst maintaining electrical and structural connection through the existing pogopin connector. You can find its model on Thingiverse as well.

In an act of kindness (many thanks!), the Hermit mailed a number of samples they’d 3D printed from their base in New York,USA; as seen in the image above.

I have 1 of these installed on the left side of my Index, and it sat there quietly for many months since just doing its job, which is the sign of a great design. These spacers are essential to have in your modding box if you own an Index and want to make ear speaker adjustments.

Depending on its fitting orientation, the spacer can be used to move the ear speaker in or out relative to your ear. Due to the pogo pins requiring a good connection but having limited engagement depth, its not advisable to double up the spacers.

The improvement to the audio was immediate, giving a balanced and comfortable audio presentation to both ears. Feedback was provided to Valve so hopefully, we will see a future iteration of the ear speaker with a depth adjustment mechanism. 

Audio Lead Extension

During the first few weeks of ownership, my Index was really underpowered in the audio department, which was somewhat disappointing. 

This caused a big loss of immersion, as audio is incredibly important in VR, and living in a busy city I immediately noticed background noise bleeding in where my previous PCVR headset with closed headphones had proven very immersive in the same room.

My immediate solution was to remove the ear speakers and switch to audio headphones to reduce this unwelcome background noise. Removing the ear speakers and using headphones proved less easy as I’d already switched to using a 3D printed wide face gasket.

This gave less clearance for headphone cables, as the audio port behind the face gasket had an awkward orientation and needed a deep jack plug with a sharp right angle, causing many cable plugs and leads I tried to foul the face gasket, uncoupling the magnets and lifting the gasket off the headset mounts.

Eventually, I modded a Logitech headphone splitter cable by removing one lead and shaving down the rubber plug grommet so the cable could clear the tight gap without fouling the face gasket. 

Using the Index with headphones was beneficial in terms of reducing background noise, which is important for City dwellers or at location-based entertainment venues where you don’t want outside music overpowering virtual experiences. 

For quieter applications with little body movement like “The Blu” my Sennheiser and Logitech headphones worked well by removing the noise of my PC and cars driving past my street in London.

Though it became obvious the amp inside the Index was specifically designed and tuned for the BMR ear speakers, as the tonal quality was quite different to when these headphones were plugged directly into my PC or even my smartphone. The headphones also seemed a little underpowered which led to the next finding.

All audio settings were tried during these weeks of quiet audio, until eventually it was tracked down to the Nvidia audio driver feeding the HDMI and Display port cables. The driver was applying minus-6 in the pre-amplification stage dramatically reducing the amount of power available to the ear speakers.

Later, Equalizer APO was installed on my PC allowing me to resolve the lower sounds power issue by adjusting the pre-amplification stage to finally provide full power to the ear speakers, which then truly “came alive” with a huge difference in audio presence.

Once the sound power issue was resolved, I spent most of my time using the BMR ear speakers as their sound quality was very good, though to be critical slightly lacking bass weight when compared to studio headphones. For their tiny size and weight (53 gramme) though, they pack a big punch and have excellent clarity throughout their range including going very loud without distortion. 

The other important reason I stuck with the BMR ear speakers was for the sheer quality of life and comfort improvements of using headset mounted, off-ear audio, combined with their really immersive and open soundscape interacting naturally with the unique shape of my wonky ears.

The only negative has been the reliability of the connection between the ear speaker “pod” and the mounting arm, the plastic joint tends to wear quite quickly, causing a small amount of free slop to develop which can allow the speaker to vibrate at higher volumes. In an ideal world, Valve could redesign the mounting arm to provide depth adjustment and eliminate this free movement.

I wrote on this blog a long deep dive about my experiments with the audio of the Valve Index, and if you are interested, you can find it here.

Valve Index palm boosters

The big disappointment for me of the Index launch was actually the Index controllers, which left me a bit shocked and confused.  They looked very cool and it was definitely a special feeling to handle them after following their development for several years following my purchase of an HTC Vive in 2016.

However, they didn’t actually fit my hands very well, with the controls in the wrong place, the controller body feeling too small in size, and a strange material mismatch between having a fabric strap clamped across the back of my hand whilst the hard plastic body controller pressed into my palm. I started wondering how they could have got it so wrong

Soon enough Valve came to the rescue with their “Palm Boosters” clip-on design released for 3D printing. Straight away I placed an order through and had them printed and shipped to the UK by Printlix in Romania for a very reasonable price.

The Palm Boosters fundamentally changed my fit, control, comfort and material mismatch.

I should mention I have medium-sized hands and wear medium-sized bicycle gloves; it seems the Index controller design offers the “naked” controller as small size and the “palm booster” fitted controller as a medium size.

This leads me to believe that larger handed owners could further benefit from a “large palm booster” with a volume increase compared to the current 3D printed part.  

I liked them so much I bought a spare pair and then wrote an article about it for SkarredGhost, that you can find here, if you are interested.

Studioform Creative VR Apache DAS head strap

In the ongoing search to further improve headset comfort for long VR sessions, I found this Apache DAS head strap from New Zealand company Studioform Creative which was advertised as being compatible with the Index.

This had been originally made for the Vive DAS and so didn’t fit my Index particularly well with the front strap fouling the BMR speaker mount, making fitting a bit awkward.

One benefit was I could reduce the overall strap pressure for the top strap and rear harness, although this could cause a loss of stability if too loose, so it was about getting the tension just right. 

Admittedly I continued to struggle getting the headset sat right each time and didn’t enjoy the extra layer of “friction” from having more straps to fuss with, sometimes I found the Apache DAS straps causing interference and moved the headset from its optimum position. 

It also caused my head to get a little warmer during active experiences like Beat Saber and Pistol Whip, so eventually I went back to using the Index with its standard top strap setup.

VR Cover Valve Index headset Cover

Soon after VR Cover had sent me their Index Face Gasket kit to test, they sent me their new Valve Index headset cover, which arrived with 2 covers in the pack.

This was designed to prevent wear and tear to the rear cushion of the Index headset hardness, as the cushion is not user-replaceable.

I found during my testing it added a bigger benefit of more firmly gripping the rear of my head, which stabilized the headset during active movement. I didn’t notice any additional heat compared to the standard head strap. This accessory was genuinely useful and a great day one installation to prevent your Index headset from getting a dirty or worn rear head strap. 

The full review on this interesting gadget is in this other post.

Soft top strap modification

During my ongoing search to improve comfort for long term sessions in my Valve Index I tried cutting up my Apache DAS strap to make the top strap of the headset more cushioned.

I had never found the standard top strap very comfortable as its thin and unpadded which can be felt on the head especially for bald headed people like myself. I’d noticed some Index users recommending repurposed strap covers from satchels and hand bags, but my DAS strap was sitting there doing nothing…

Whilst this modification added a good degree of comfort, it also increased the heat by covering a substantial part of my head, so I soon removed it when I got back into playing Beat Saber.

Soft tether routing

The standard tether routing on the Index caused my Index launch headset to start sparkling after 2 short weeks of use, after simply opening and closing the headset a number of times had put a nasty kink in the tether which was firmly anchored by 2 plastic mounting clips.

After receiving a replacement headset I switched to modified cable routing which ditched the plastic mounting clips in favor of “soft” Velcro attachments. Initially, I used a 3D printed Index tether belt clip mounted using a Velcro strap above the head strap rotary dial but noticed a crease developing where the tether exited the cable clip.

This led to understanding that the tether is relatively soft and quite easily damaged from being coiled up, badly stored or being stressed whilst being worn due to poor cable routing; additionally any blunt edge (cable clamp) applied against the tether over time starts to crease the plastic cover. 

Talking of storage, its worth looking at videos of “how to coil audio cables” as its very easy to damage the tether from improper storage with the cable becoming internally wound.

Eventually I settled on a “soft” solution as seen in the image above, which firmly holds the tether with large pieces of soft Velcro that stick to matching Velcro strips on the harness. Since this image was taken I have extended soft support for the tether where it comes off the head strap to prevent any crease developing in the tether. 

Used with a “soft” belt clip (Velcro wrap) and shorts/trousers with a suitable belt, this stops the tether from getting easily damaged and should reduce its unwelcome presence felt on your head or back as you move around.


Valve designed the Index headset with a “Frunk” (front trunk) which contained a USB port to offer expansion options to the modding community. At the launch event for journalists, Valve had a small display panel installed displaying different messages.

The expectation was that the community could come up with all kinds of cool stuff to bolt into the Frunk, and the community has certainly delivered: at this page you can find the list of all mods created by the community.

Personally I found the Frunk ideal for housing my Xbox controller wireless dongle, or rarely for charging an Index controller with a flat battery whilst continuing to play by plugging it straight into the headset.

It’s neat but non-essential as the Xbox dongle works fine when plugged into my PC, and charging is much quicker using wall-mounted USB mains chargers.

Then a question arises, would removing the Frunk improve the headset design? This could remove a big lump of plastic from the front and provide a lighter/slimmer headset.

Bear in mind the Index is a heavy headset with a bias towards the front, so any reduction in weight, complexity and manufacturing cost would be welcome. I’ve already seen modifications where owners have removed the Frunk cavity and replaced it a 3D printed blank, though warnings exist that this can upset the calibration of the tracking system so is best approached with caution.

Frunk removal would have to be weighed against the benefit that some Index owners really appreciate, the most obvious being the “Chilldex” cooling system that fits neatly into the Frunk, or an Ultra Leap module for hand tracking experiments. For now, I’ll keep using it for my Xbox dongle as it frees up another USB slot on my PC which is always useful. 

Cranial cap with occipital support

After all my experiments with face gaskets, top straps, and rear covers, I looked at a more radical proposal. Instead of adding extra padding and material to solve comfort issues (which just added weight and heat), perhaps a fundamental redesign of the headset mounting would be more beneficial.

I drew inspiration from the Kathryn Bigelow film “Strange Days” where the lead character Lenny wears a very cool head-mounted FBI developed device. The “Squib” records brain waves as the user lives an experience, but also allows playback causing another user to relive the experience, starting an illegal black market of recordings.

This device had a skeletal structure designed to closely fit the skull, and this was my launching point for a “cranial cap”. 

Image: Strange Days, 20th Century Fox.

The benefit of the cranial cap is to use the skull itself to support the headset, and remove pressure from the face, perhaps using a soft gasket like PSVR to seal the eye box against light ingress . I stripped down a bicycle helmet and removed its “Mips” safety liner to use as a working model to develop the concept. After rebuilding the liner with attachment points for the headset, I pulled back the Index harness and tried some fitting sessions to check clearance.

The idea seems to work well, with the next step being a 3D head scan so I could build a head model, but as the Coronavirus pandemic unfolded it became a non-option with my booking at a specialist scanning facility in London “put on hold”.

The other option was the old-school route of making a head cast using plaster of Paris, which would provide me with the ability to then plaster cast a physical model of my head onto which I can directly build a cranial cap unique to my head.

The cranial cap concept has a minimalist design of wireframe structure with CoolMax contact pads in key places, and an occipital support structure at the rear. Weight, pressure, adjustment, cooling, skin comfort are all considerations. More on this soon…

Closed headphones for BMR ear speaker mounts

Another project I’ve been looking at a while is a “closed headphone” for the BMR ear speaker mounts on the Index headsets.

After my experiments with audio leads, headphones, and ear speaker spacers I wanted the option of a closed headphone for users like myself with noisy backgrounds or using quieter applications/experiences where a closed headphone could be ideal.

This would simply replace the existing “open” BMR ear speaker using the same pogo pin fitting to provide a hassle-free swap-out.

The trickiest part is not physical packaging and adjustment, but working out the best headphone drivers to use which can play nicely with the amp inside the Index headset, as mentioned previously the amp has been specifically tuned for the BMR ear speakers.

Some final thoughts on 1st year of ownership


The Index was unusual in being the first headset to offer user-adjustable frame rates of 80 Hz, 90 Hz, 120 Hz, and 144 Hz. The higher frame rates and ultra-low persistence display had big implications for the user’s sense of immersion and virtual presence

Being a “power user” with an overclocked multi-core processor (8086K @ 5.2Ghz) and GPU (MSI Duke OC 2080Ti) I had lots of headroom to experiment, or so I thought…

It quickly became apparent that many VR applications were poorly optimized meaning even a power user may struggle to hit the right frame timing without wallowing in re-projection, dropping frames or having to use motion smoothing.

A handful of less graphically demanding games like Beat Saber, Space Pirate Trainer, Pistol Whip and Superhot ran well at 144 Hz, whilst most of my games worked well at 120 Hz, and some of the more demanding games worked best at 90 Hz.

I even tried 80 Hz for some of the driving simulator applications which are computationally expensive and tend to quickly grind to a halt once graphical settings are increased.

120Hz seems to be the “sweet spot” for most of my applications, giving a fresher, sharper feel than 90Hz but without going into unwanted re-projection. But for certain titles, the benefit of applying “super resolution” outweighed the desire for higher frame rates.

Super Resolution

Often called “super sampling”, Index really benefited from my powerful PC as I could increase the render resolution which is then downsampled to fit the native resolution of the Index display hardware, reducing aliasing and giving amazing clarity.

130% resolution at 90 Hz, 110% resolution at 120 Hz or 100% at 144 Hz were just some of many settings I tried, Index is fantastic in giving the user these options if they have the computing power to play with.

For some seated games like “Aircar” 90 Hz felt very comfortable, whilst increasing super-resolution in-game to 1.3 gave a big boost to immersion (visual presence) with an incredibly clear visual quality giving a good idea of how much higher resolution displays will benefit future PCVR headsets.

I was surprised how much difference super resolution made for Index, with its minimal screen door effect (partially thanks to the display diffuser) it pushed the display quality to another level, with some really breathtaking moments in the best VR titles.

However, for fast-moving action games like Pistol Whip and Beat Saber, using higher frame rates with regular resolution (for stability) provided a more substantial advantage for game accuracy and body presence.


Something not talked about much is display brightness (luminance), but its very important in terms of contrast, visual immersion and feelings of presence.

Its certainly something I noticed when moving from a HTC Vive to an Oculus Rift CV1, which had a clearer display with less screen door effect but seemed to be quite dim with muted colours. Whilst I enjoyed the clearer picture, I never felt “present” in the CV1 partially the dimmer screen and partially the smaller field of view.  

Something noticed by many veteran VR owners using the newer LCD headsets is a big reduction in display brightness with less vibrant colours, and murky or washed out blacks in some dark scenes. The LCD displays operate very differently to the older OLED display, and simply do not provide the same levels of luminance, which can make applications colour graded and lit for the older OLED headsets, less than ideal on Index.

To give some figures, quoted by VR Dev and Redditor “Eagleshadow” who did direct testing on these headsets:

Luminance in nits:

  • Index: 95
  • Vive Pro: 143
  • Vive: 214

As you can see, Index has a relatively dim display compared to the older OLED displays in Vive and Vive Pro. Thankfully, Valve later released a headset update which allows the user to increase display brightness to 160%.

I haven’t seen any measurements yet with the display at 160%, but anecdotal comments put the increase closer to the Vive Pro but not as bright as the original Vive.

As there seems to be a correlation between display brightness and the glare inherent to the dual compound Index lenses, brightness adjustments can be made depending on applications and user requirements/preferences.


Well what can I say about the Valve Index after my first year of ownership? Its been a mixed year no doubt with incredible moments of sheer presence in virtual reality, tempered by the tedium and frustration of often waiting on replacement parts, typically for the Index controllers.

Ultimately I am here using virtual reality purely for the immersion, and the Index offers an immersive experience I haven’t found in other VR headsets so far!

Its been very revealing going to a number of location-based entertainment venues and events over the past year and feeling less than satisfied after using a Rift S, Vive Pro Eye or Samsung Odyssey Plus. I found with the older headsets they simply do not offer the same level of immersion as my Index. 

Valve has certainly created something very special, yes it has some flaws and quirks, but as their first attempt at an “in house” system it’s a great first step and can only get better as further developments improve the overall experience and hopefully reduce the need to regularly RMA parts of the system.

Current pain points

1. Face Gasket

Left: Valve original, right: wide custom

Wide face gasket – we need an “official” version as soon as possible, or an aftermarket version with sweat absorbency and skin compatibility

2. Wireless PCVR

The tether…nothing has really changed since Vive Pre in early 2016, it’s still a nuisance, point of failure, breaks immersion; wireless would be very very welcome. We are probably waiting on the new wireless standard to be approved for domestic use, as the standard was delayed last year. Having used wireless on the Vive Pro, I would happily pay top dollar for an Index wireless module  

3. Controller Joysticks

Whoops! Sure that’s not supposed to happen?

Controllers – upgraded joysticks are required, as a small increase (1mm longer) I measured in the shaft length of the left stick on my later replacements has not prevented joystick drift from occurring again. 

Going back to a graphic I created in early 2017 after finishing my “Room scale Plus” experiments with the HTC Vive, summing up my thoughts as an early adopter.

It’s very interesting for me over 3 years later to see how many of my wishes have been met and which are still outstanding. It seems even back then, the tether had made itself known too many times!

Thanks for reading! Rob Cole


VR Cover’s ‘Valve Index face gasket’ and ‘rear cover’ reviews

Originally posted by SkarredGhost, edited to correct my original spelling mistakes.

Introduction by Tony of SkarredGhost

The VR ergonomics expert Rob Cole of has tried for us the VR Cover headset covers for the Valve Index, and had reviewed it for us. I’m very glad to host in this blog his professional impressions on this VR accessory, that it’s very informative for all the VR community. Considering that very soon there will be the launch of Half-Life: Alyx, all people owning a Valve Index are for sure interested in anything that can improve the comfort of their VR headset.”

VR Cover: Valve Index Interface & Foam Replacement Basic Set

valve index face gaskets
Playing with many different Valve Index face gaskets

The face gasket conundrum

Nine months after launch, replacement “face gaskets” for the Valve Index remain somewhat thin on the ground.

Valve’s official face gasket is often out of stock, and was only released in one width which may not be suitable for everyone.

Shipping Index with a single gasket was odd, considering Valve’s earlier collaboration with HTC which had seen the Vive shipping with both narrow and wide face gaskets in the box. 

Later I learned from Steam user BOLL that Index was originally listed in early April 2019 as coming with “2 Face Gaskets (narrow and wide)“.

By the end of April he had noticed the webpage had been edited to remove any mention of narrow and wide, leaving just “Face gasket”.

I’ve asked Steam support several times since launch about an official wide face gasket, but I always get the same reply

Steam support does not have any information on when or if a new gasket will be made available.

One of the moderators on the valve index subreddit said they had learned that the Index development kits had shipped to SteamVR developers with both width gaskets in the box, mirroring BOLL’s earlier findings. 

Physical evidence of a large Index face gasket recently emerged on Reddit after someone was mistakenly sent one of the “L” gaskets by Steam Support. As seen in the photo below, it has the old “clip in” pre-production mounting tabs, Valve then switching to magnets for the production gasket.

Perhaps this means some tooling or 3D printing files exist for this L model somewhere at Valve or their manufacturing partner in China, giving me hope that it could be released in the future!

The wide face gasket

As my previous article for SkarredGhost “Valve Index : A Good Fit?” mentioned, I couldn’t use my Index with the original Valve face gasket as it simply did not fit, it was too narrow for my face.

As a former Vive owner who always used the wide face gasket, this was puzzling as being a “sample-sized” person (medium everything and 63.5mm IPD). I am no huge-headed outlier requiring an oversized gasket, just a regular-sized person, if there is such a thing.

Perhaps it’s not well known that the wide Vive gasket was really a “regular” fit, with the narrow being for people with narrower faces; some Vive owners with larger heads had to build their own extra-large gaskets. This is why the wide gasket was fitted to the Vive headset in the factory and the narrow came as a spare inside the box. 

valve index out of the box
Valve Index, just taken out of the box

A temporary solution was provided for my Index gasket problem by 3D printing a stretched version of Valve’s plastic face gasket base design, that they had released as part of a big Index data dump into the public domain. Big thanks to Valve and to Anonymous Hermit for modifying the face gasket!

After receiving a 3D printed base from Ninja Prototype in China, I had stuck Velcro and magnets into place, using the Velcro to attach aftermarket Vive PU face cushions. As the Vive cushions were smaller than Index’s wider eye box I ended up cutting them to fit, to maximize the field of view. 

This was less than ideal as it had left several unsealed edges where the cushion was cut, which degraded over time from heat, moisture (sweat) and physical contact (abrasion) against the face from using and donning/doffing the headset.

It also caused mild skin irritation during longer or more active sessions with the PU cushions trapping heat and moisture against the skin; I experimented with some spare fabric from an Index face gasket I had stripped, which certainly added some skin comfort.

valve index wide face gasket
Adding some spare Index fabric onto the PU to increase the comfort

After going through a number of cut-up cushions since last year, I was excited to hear about the first commercially available Index Face Gasket from industry stalwarts “VR Cover”.

VR Cover to the rescue

VR Cover has been making face gaskets, face cushions and other facially related parts since the first consumer headsets launched in 2016. Tony @ SkarredGhost put me in touch with the nice people at VR Cover who sent a sample I could test (thanks Sharon!)

vr cover valve index
Box sent by VR Cover

The package arrived in a very neat plastic container, consisting of:

  • 1 x Facial Interface (plastic gasket base)
  • 1 x PU Leather Memory Foam Replacement (Standard) i.e. thin
  • 1 x PU Leather Memory Foam Replacement (Comfort) i.e. thick
  • 2 x side wedges
vr cover cushions
Cushions provided by VR Cover

This was an impressive set of parts, well finished especially the plastic base with its own Velcro facing and magnets.

The first thing I did, of course, was to compare the VR Cover plastic base with my own 3D printed wide base and an original Valve gasket, and this is where I noticed a key difference; the VR Cover plastic base was identical in radius to the original Valve face gasket.

valve index 3 face gaskets
Top to bottom: valve Index face gasket, 3D printed custom wide face gasket, VR Cover Valve Index face gasket

Looking closely, I realized VR Cover had created two fitting options on a single width plastic base by supplying thin and thick versions of their PU cushions.

Using the “thick” cushion gave me an identical fit to the original Valve face gasket, albeit with a different material. I tried installing this option but as with the Valve original, I had a noticeable gap between my forehead and the cushion which prevented me getting my face forward enough to fit the headset correctly.

I also tried the side wedges but could not get my face anywhere close to the front of the face cushion!

VR cover side wedge
Trying with side wedges, but with no luck

Using the “thin” cushion gave a wider fit than the original Valve face gasket, but still not as wide a fit, as my 3D printed setup.

Width is better talked of as radius, or circumference, in my case a 59cm head which is the upper end of “medium” in a bicycle helmet or baseball cap – the thin cushion and VR Cover plastic base wasn’t an ideal match, but certainly closer to my measurements than the Valve original face gasket. 

Unfortunately, I soon found that using the “thin” cushion led to physical discomfort and red marks on my forehead, as I could clearly feel the plastic base pressing though the thin cushion which after 30-45 minutes of use left my face feeling a little sore.

This was not unique to the VR Cover’s thin cushion by any means, Index is a relatively heavy headset which means extra cushioning in the face gasket helps to spread the headset weight and headset clamping force across the available areas of the head and face. To confirm, last year I had experimented with using thin aftermarket Vive cushions with my 3D printed base but had soon switched back to slightly thicker cushions to increase session comfort

Of course, there was nothing stopping me from trying VR Cover’s face cushions in my 3D printed wide base, these fit well and let me experiment with the thin and thick cushions.

The thick cushion worked well at first, providing extra comfort to isolate my face from the headset weight and clamping force.

Installing the VR Cover inside the 3D-printed plastic gasket base

The thin cushion also worked to bring my face as far forward into the display as possible. However, despite the increased radius of my 3D printed base, the physical weight of the Index headset soon made its presence known through the thin cushion, again leaving me feeling a little sore after an hour of use.

Using VR Cover’s thick cushion with my 3D printed base gave a more positive outcome than using their thin cushion with the VR Cover plastic base, so I carried on using the thick cushion for a while.

However, after perhaps two weeks of regular use, I started to notice the weight of the Index headset again and realized the foam inside the thick face cushion was slowly flattening out (thinning) reducing my comfort. After another two weeks, my thick cushion did not look much thicker than the thin cushion (which I had hardly used) and I found it a little uncomfortable apart from short sessions with less movement.

The PU issue

Something else that has to be mentioned, and it’s not specific to VR Cover’s Index face cushion, is the biological incompatibility of PU as a facial interface material when you consider the skin’s requirement to breathe (release heat and sweat).

There is little evidence that the PU material itself causes a reaction as fully reacted polyurethane polymer is chemically inert.

From the PU Manufacturers Association: “Skin contact with some polyurethane products may result in skin sensitization”, but also “There are no applicable exposure limits for cured polyurethane materials”

There is very little information on the use of PU as a skin contact layer, I found this from the US National libracy of medicine, which concluded that PU was more effective than silicone for scar treatment:

Efficacy of a polyurethane dressing versus a soft silicone sheet on hypertrophic scars.

The polyurethane dressing demonstrated a significantly more pronounced reduction in severity of these clinical signs after four and eight weeks of treatment and was better tolerated than the silicone sheet.

So whilst PU itself is generally not an irritant, it can act as a “dam” to prevent the skin from breathing in areas directly in contact with the gasket – think of it as being a waterproof layer between your skin and the outside world, this then stops the skin functioning properly in that area.

Away from medical trials, back in the VR world, the PU cushions were doing what they’ve always done for me which was the causing localized skin irritation, leaving my forehead sore after a session with a big red mark, combined with the weight of the headset pressing through the cushion. Longer-term there is a tendency for these marks to develop into spots or blemishes where the skin is repeatedly irritated.

vr headsets red mark face
Red marks left on the face of the user

PU has its advantages for VR facial interfaces, as it doesn’t absorb moisture, so it’s easy to clean which makes it ideal for sharing headsets or use at public events where hygiene is critical and users are only doing short sessions (i.e. VR demo at a shopping mall). 

It also has an adhesive property in that it sticks to the skin when wet, making the headset “stick” in place better at the expense of making it difficult to reposition. One practical example of this is if you snag the tether and yank the headset out of position, it’s then much harder to reposition on the face with a damp PU cushion.

For a solo user at home, wearing a device like the Valve Index which is designed for long term comfort, the PU cushion started irritating my skin making my Index less comfortable, negating the possibility of longer sessions with adequate comfort.

The materials that Valve used on the Index face gasket were specifically used to increase user comfort to support long sessions, and this was my realization after months of using different PU cushions and fabric covers.

Of course, before receiving the VR Cover sample, I was using PU cushions in my modified 3D printed base, but these had a perforated surface, and had been cut into three pieces providing some extra breathability. The VR Cover PU cushions were fully sealed, with no surface relief, effectively trapping whatever local heat and sweat my head produced.

Once again I must stress the issues of PU cushions are not unique to this VR Cover product, depending on how active your session is, your fitness level, room temperature and so on….will all have an effect on how much of an issue using PU is?

Solution to the PU issue?

I’ve given some feedback to the team at VR Cover, to see if there is an alternative material – this is not an easy task as the material needs to be biologically compatible whilst being durable and easy to clean! 

As many Valve Index owners found out with the original Index Face Gasket, it soaks up sweat very quickly, becoming moisture-laden with a tendency for bacteria to build up inside the foam core leading to a less than pleasant experience.  Whilst it was possible to wash under cold water and air dry, this didn’t deep cleanse the cushion and repeated washing started to create ripples in the fabric surface.

Another aspect of PU that has to be mentioned, as it was commonly cited an issue on the HTC Vive when used with aftermarket PU cushions, is the build-up of heat and moisture inside the headset.

One function provided by the fabric cushions on the Vive and Index is to wick away moisture from the face and store it inside the cushion, effectively protecting the electronics inside the headset. I noticed very quickly when using PU cushions that my headset got wet inside, at the top where the lens assembly is located.

valve index sweat pu
Valve Index with sweat caused by PU cushions

In the short term, this meant more frequent removal of the headset and cleaning of the lenses as they become covered in sweat smearing the surface and reducing clarity.

In the long term, this may cause problems, as some Vive owners found when using aftermarket face cushions leading to corrosion damage to the PCB inside the headset, something that rarely affected people using the original fabric faced cushions.

Whether this can damage the Valve Index is unknown, the Vive reportedly lacked any internal waterproofing; I’ve seen some “tear down” shots of the Index where its PCB appears to have a waterproof coating but I can’t confirm this.

The ripple effect

Another big improvement could be a “pre-curved” cushion to eliminate the ripples that are created by fitting a flat-cut cushion to a curved plastic base. This is caused by the inside face (plastic base side) and outside face (face side) being the same distance/length.

As the cushion is fitted into the plastic base the inside face is stretched whilst the outside face is compressed causing the ripples seen in my image. These ripples can be felt across the forehead and may be partly responsible for the discomfort felt during longer sessions.

Ripples cushion valve index vr cover
Ripples on the VR Cover cushion

Once again, this is not unique to VR Cover, and is seen in many other VR face cushions. The big advantage of a pre-curved face cushion is the absence of ripples or material bunching up as the pre-curve naturally matches the radius of the plastic base on both front and rear cushion faces. 

The original Valve Index face cushion and Oculus Rift CV1 face cushion are both pre-curved designs with no ripples appearing in the surface until well worn.


Overall the VR Cover set has a good design concept as I like the modular approach, and of course bringing an alternative Face Gasket for the Valve Index to the market is very welcome.

For people who want a same width replacement for the Valve Index Face Gasket and cannot buy one from Valve due to stock levels, it will solve that problem. 

For those who cannot 3D print a plastic base, or don’t feel confident building their own, VR Cover’s plastic base provides an instant solution with two cushions to choose from.   

For people requiring the wider face gasket (without 3D printing) it can offer a solution but your fit and comfort will depend on your craniofacial shape, and whether you can tolerate the “thin” cushion which I had to use to make it wider. 

However, it’s still not as wide fitting as the 3D printed option and I did find it uncomfortable for longer with the PU material causing a skin irritation; as said before, not unique to VR Cover but just the use of PU as a skin contact layer.

My final conclusion is that choice is always good so VR Cover needs to be congratulated for bringing this to market. I’m sure with further developments by the VR Cover team this product can offer more fitting and comfort options for Index owners. 

In an ideal world I’d like to see VR Cover offer 2 versions of their Index kit:

  • Regular plastic base (as tested here)
  • Wider plastic base

Each base could be supplied with 2 pre-curved face cushions (1 for use, 1 for spare)

I’d recommend using a medium thickness cushion of a higher densitybreathable foam core and skin-compatible surface material.

Valve Index Head Strap Cover

Later on, I received VR Cover’s new “Valve Index head strap cover”.

VR Cover valve index rear cushion
Valve Index Head Strap Cover

In their own words:

Experience a fresher, cleaner headset when you add our hygienic 100% cotton cover to your Valve Index. Our absorbent cotton accessory wraps onto the strap and quickly soaks up sweat from the back of your head to leave you feeling more comfortable.

The set includes:

  • 2 x Valve Index Head Strap Cover

A concern for a number of Index covers was the non-removable rear cushion inside the headset harness. Despite using the same anti-microbial fabric as the original Valve index face gaskets, it was obvious that over time this could become dirty, stained or unhygienic.

Valve Index rear cushion
Valve Index rear cushion

Of course, I’ve tried to remove the head strap’s rear cushion on my Index months ago in an attempt to drill a hole through the headband plastic to modify the tether cable routing, but had stopped after finding it was retained using what looked like one-time “snap fit” plastic clips.

After levering an area of the cushion’s plastic backing with a flat blade screwdriver it felt like the clips might snap, so I left it in place. This presented a problem as there was no way to replace the fabric facing of the rear pad; over time this could take on moisture, bacteria, dirt and become worn or compressed from regular use. Replacing the rear harness was not possible at a consumer level, even if spares were available. 

Upon opening VR Cover’s Index Head strap cover kit, I was a little confused by the instructions until I realized both covers were inside out. Turning them the right way around helped, but the instructions still proved a little confusing so I tried fitting it myself to figure out exactly where the straps and Velcro were supposed to go. It’s great that they supplied two, so you have a spare for yourself, or can run two so you have a spare for guests to use (this works well combined with a spare face gasket). 

valve index rear covers
Valve Index rear covers plus instructions

Eventually, I got the cover fitted to my Index, and placed it on my head. Immediately I noticed the harness was now a little too tight as adding the cover had slightly reduced the circumference so I backed off the rear knob adjuster 3 clicks.

Valve Index rear cover fitted
Rear cover fitted to the headset

The most interesting aspect was discovering that the fabric cover firmly gripped the rear of my head (mainly the occipital bone). This added a welcome degree of stability to the head strap, reducing front end (eye block) movement of the VR headset. Not something I was expecting but a very welcome surprise.

It also felt a little softer and more comfortable across the rear of the head strap / harness, I didn’t notice any difference in heat or sweat compared to using the “naked” Index head strap, despite energetic sessions in Beat Saber and Pistol Whip.

valve index rear cushion cover
Rob Cole wearing the headset with the rear cushion cover

As I’ve only been using it a few months, I cannot comment on long term durability except to say it’s not showing any wear, and if it does wear then it’s done in job in protecting your Index. It’s also great value, coming with two covers, perhaps fitting the cover on day one of your Index ownership will help your Index maintain its own value rather than degrading as many VR headset tend to over time.

The only improvement I could think of was to the instructions, it might have been me not understanding them but that in itself is the “acid test”: can they be understood very quickly and easily? The VR Cover head strap cover itself thankfully suffers no such problem, it’s highly recommended by me!

Thanks to VR Cover for the test samples and of course thanks to Tony @ SkarredGhost for the hookup.

And thanks to you for reading!


immersivecomputing @ Saturnz Barz, Gorillaz (Spirit House)

“This was hugely impressive on Google’s Daydream headset; using a Google Pixel XL smartphone and Sennheiser HD461 hi-fi headphones showcased the quality of this expertly crafted experience.

I preferred the original Daydream headset for this incredible gorillaz VR experience, as the second generation headset’s had Fresnel lenses which introduced unpleasant god rays.

There are 2 versions both free to download; the Daydream application, and the YouTube VR experience. The Daydream version was the premium version, no doubt.”

Rob Cole,

Platform: Google Daydream+ Pixel XL

For more information please follow this link:

Gorillaz ‘Saturnz Barz (Spirit House)’

Thanks for reading! Rob Cole,


immersivecomputing @ Sky4DVR, Westfield, London

Visited June 2017

Sometimes the best experiences are the surprise ones, unexpected but very welcome.

During a visit to one of the Westfield shopping centres in London, I noticed a futuristic booth with Sky 4DVR branding and a lady wearing a HTC Vive VR headset.

Walking closer I saw an HTC Vive and Vive wand in the booth, both covered with white Hyperkin sleeves, which looked very cool. The Vive was fitted with the new DAS (Deluxe Audio Strap) but with the headphones removed.

The demo area was relatively large with a floor plate, air vents and camera on one side.

Vibrating floor plate for haptic feedback
Hot and cold air vents and GoPro camera

After speaking with the friendly people running the booth I was soon handed the Vive headset and a single controller, and a lovely pair of Sennheiser headphones to wear.

HTC Vive with Hyperkin sleeve

Stepping into the demo area, I realized the floor plate was actually a heavy duty vibration unit, whilst the air vents blasted hot and cold air across the area. A single GoPro camera was busy filming each demo so the Sky staff could email a copy to each attendee.

VR inside a shopping centre is quite novel

The content was created by UK based film special effects company “Framestore” which meant super high quality assets and a very polished experience.

The ice king from Game of Thrones

I started in a kitchen as formula 1 cars zoomed around me, some footballers playing around me, and then an amazing section with the “Ice king” from The game of thrones…wow!

The icy air from the air vents and vibrations as he came closer were very convincing!

Awesome Sennheiser headphones and Vive DAS
Formula 1 cars in the kitchen!
Vive base station for steamVR tracking

Overall a very high quality experience which shows how the extra budget associated with television and film companies can be used to create very effective and memorable VR experiences.

Placing this inside a very busy shopping centre is a huge win to expose many new people to VR in a good way.

Thanks to Sky 4DVR for the free experience.

Thanks for reading! Rob Cole, immersivecomputing


Immersivecomputing @ Beat Saber, Namco, London

Visited February 2020

During a recent visit to Namco at County Hall in London to see the new Mariokart VR installation (previously at the 02), I noticed a bona fide Beat Saber standalone arcade machine.

Beat Saber standalone arcade machine

I’d read about these online but never expected to find one in London; of course I had to give it a try!

Exciting video quickly demonstrates the concept of the game and makes it inticing

After pushing several pound coins into a slot on the front right side, it all came to life with an electric whirring noise as the HTC Vive headset and wand controllers lowered on a special motorized array.

It looked like something from a transformers movie or cyberpunk game, perhaps a real world example of the matrix now available at your local arcade!

Ingenious array supporting headset and controllers

Getting into the headset was a little tricky because it was attached with 3 armoured cables which resisted my efforts to pull the headset down.

Once fitted I tried to set the IPD but found it fixed, one less thing to go wrong; I guess they set it on an average IPD of 64mm.

Grabbing the Vive wands I navigated through the menus see selecting a familiar track by KDA “popstars” and setting expert mode.

KDA Popstars on expert mode

It was fun to be back in Beat Saber, but also strange being restricted by the 3 cables connecting the headset to the gantry above, and to a lesser degree by thinner cables to the controllers.

I’m used to be tethered on PCVR but this was different and felt perhaps more like a piece of gym equipment?

Whereas in comparison on my Valve Index I can happily dance about very freely / badly with its wireless controllers and 5 metre long thin headset tether which sits on the floor behind me.

Moving took extra effort but it was possible to adapt

Movement here took extra force to overcome the drag I was feeling from the cables making me work harder to hit the right moves; timing was challenging but I quickly learned to compensate especially trying to move sideways

I reached the end of the song with B grade, removed the headset and watched with fascination as the entire apparatus lifted back up into the overhead gantry ready for the next player.

At this point I noticed a plastic bracket or hinge piece was broken and not doing whatever it was supposed to be doing making one side of the headset mechanism to slump; this may have contributed to extra drag in the tethering system?

I alerted the supervisor who immediately shut the machine down, I then noticed I hadn’t used any wipes or santising products before starting! Set several feet further back in the dark on the walls either side of the machine, was a hand santising dispenser and an empty box of wipes. The message at the start now made sense…

Impressive stuff despite the movement restriction, which was the result of an ingenious solution to create a standalone unsupervised VR arcade machine. It certainly would be huge fun to play in a shopping centre or airport and could tip someone into purchasing a home VR system.

Satisfied with the self-service Beat Saber standalone arcade experience but keen to try again once repaired, I went off to find the bathroom and give my face a good wash.

Thanks for reading! Rob Cole, immersivecomputing